Generalized Multiscale Finite Element Methods (GMsFEM)
نویسندگان
چکیده
Article history: Received 8 September 2012 Received in revised form 18 April 2013 Accepted 24 April 2013 Available online 22 May 2013
منابع مشابه
Cluster-based Generalized Multiscale Finite Element Method for elliptic PDEs with random coefficients
We propose a generalized multiscale finite element method (GMsFEM) based on clustering algorithm to study the elliptic PDEs with random coefficients in the multiquery setting. Our method consists of offline and online stages. In the offline stage, we construct a small number of reduced basis functions within each coarse grid block, which can then be used to approximate the multiscale finite ele...
متن کاملMultiscale Empirical Interpolation for Solving Nonlinear PDEs using Generalized Multiscale Finite Element Methods
In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with mult...
متن کاملGeneralized Multiscale Finite Element Method for Elasticity Equations
In this paper, we discuss the application of Generalized Multiscale Finite Element Method (GMsFEM) to elasticity equation in heterogeneous media. Our applications are motivated by elastic wave propagation in subsurface where the subsurface properties can be highly heterogeneous and have high contrast. We present the construction of main ingredients for GMsFEM such as the snapshot space and o in...
متن کاملMultiscale model reduction for shale gas transport in fractured media
In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work [1], where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interac...
متن کاملA Generalized Multiscale Finite Element Method for poroelasticity problems I: Linear problems
In this paper, we consider the numerical solution of poroelasticity problems that are of Biot type and develop a general algorithm for solving coupled systems. We discuss the challenges associated with mechanics and flow problems in heterogeneous media. The two primary issues being the multiscale nature of the media and the solutions of the fluid and mechanics variables traditionally developed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 251 شماره
صفحات -
تاریخ انتشار 2013